
 May/June 2003 3

26 rue du Montant
F63540 Romagnat
France
roland.cordesses@free.fr

Some Thoughts on
“Real-Time” SSTV Processing

By Lionel and Roland (F2DC) Cordesses

How to improve our present SSTV programs.

Picture transmission—SSTV and
fax—has been a part of the Ama-
teur Radio world for many

decades. The receiving end changed
dramatically with the availability of
PC-based software at the beginning of
the 1990s. However, the methods used
to demodulate the SSTV signal, that is,
to measure the frequency of the re-
ceived tone carrying the luminance, are
not so different from those used 10
years ago. Today, microprocessors are
powerful enough to run efficient “real-
time” algorithms that yesterday needed
a digital signal processor (DSP). Mod-
ern available computing power allows
better processing of raw SSTV signals
and better picture quality.

In this paper, we present some un-
conventional approaches to process and
use synchronization signals as well as
to extract luminance information. These
processing methods significantly im-
prove picture quality when receiving
conditions are poor—in the presence of
noise, QRM and so forth. They also per-
form an on-line, accurate estimation of

2 allee Dauphine
F78140 Velizy
France
cordesses@renagri.com

Reprinted with Permision

the sound-card sampling frequency, cir-
cumventing the calibration step needed
in many—if not all—varieties of SSTV
software. A dedicated program using
the described algorithms has been de-
signed and tested not only during simu-
lations but also on real on-the-air SSTV
signals.

An Overview of SSTV
While this paper focuses on the pro-

cessing of the Martin M1 signal, speci-
fications of which were kindly pro-
vided to us by its author G3OQD,1 it
is clear that ideas and algorithms pre-
sented here can be applied to other
SSTV formats. We will first present
some methods that are used to de-
modulate SSTV signals and then re-
call some technical specifications of
the M1 mode.

SSTV Demodulation
The purpose of any color SSTV de-

coder is to recover the red, green and

blue original information from the
frequency-modulated signal and to
accurately extract the video line with
respect to the horizontal synchroniza-
tion signal. This has long been done
using analog approaches.2

Before the all-digital era, a hybrid
approach was used. The demodulator
was still relying upon an analog cir-
cuit based on filters, adders and so on.
Once demodulated, this analog signal
was digitized. Further processing,
such as image processing, was then
carried out on a computer. This was
done back in 1970.3 Later, digital pro-
cessing of the demodulated signal
became the basis of some computer-
based SSTV solutions. See “Viewport
VGA” and our own solution based upon
the same hardware.4, 5

The all-digital approach first con-
verts the analog signal from the re-
ceiver into a digital signal, using an
analog-to-digital converter (ADC).
Then, all the DSP demodulation and
synchronization detection is per-
formed on a computer. The two-level
ADC, often a simple op amp, became
one of the bases of much software—
JVFax, for instance.6

Then came sound cards. Thanks to
low-cost hardware, the sampling of

1Notes appear on page 19.

4 May/June 2003

analog signals was possible. Most of
the actual sound cards can reach a
44.1-kHz sampling frequency with 16
bits per sample. A new generation of
software makes use of the sound card:
JVComm32 is one of them.

Our approach clearly belongs to the
last one—the all-digital one. After 10
years of experiments with SSTV de-
modulation for one author and more
than thirty for the other, we really
think there is room for improvement.
Perhaps a lot of room, we think.

When receiving conditions are poor
and the signal-to-noise ratio (S/N) is
low, much of the available software per-
forms poorly. Sometimes it is not able
to receive a faint picture you can hear
in the background. Other times, it does
receive something. Unfortunately, most
software is unable to synchronize prop-
erly under these conditions. We decided
to focus on these situations and attempt
an answer to the underlying technical
questions. So, if you are interested in
SSTV, or just curious to see what DSP
can bring to such an old standard, go
on reading!

The Martin M1 SSTV Signal
Let’s briefly recall the specifications

of such a SSTV signal. The original
picture is in color, described by its red,
green and blue spectral components.
The size of the picture is 256× 256 pix-
els. Each spectral component is
transmitted in turn; that is, the 256
green pixels signal first, the blue and
then the red. As in McDonald’s origi-
nal system (see Note 2), the modula-
tion is a frequency modulation
described by Eq 1.

then the red.

()
lum

blackwhite
blackl max

lumff
ff

−+= (Eq 1)

where: fblack is the frequency of a black
pixel (1500 Hz), fwhite is the frequency
of a white pixel (2300 Hz), and maxlum
is the maximum value of the lumi-
nance signal. A usual value is 255 for
pictures coded with eight bits per com-
ponent (and thus 8 × 3 = 24 bits for
red, green and blue). lum is the value
of the luminance and fl [read “f” sub-
script lower-case “L”—Ed.] is the cor-
responding modulating frequency.

One line of the original picture is
transmitted according to the following
timing (see Fig 1). The horizontal
line-synchronization signal (fsync =
1200 Hz) lasts ts = 4862 µs. During t1
= 572 µs, a 1500-Hz tone is transmit-
ted. The green component of the line
is then transmitted. Each pixel lasts
572 µs, thus the green signal lasts tG
= 256 × 572 = 146,432 µs.

During t1 = 572 µs, a 1500-Hz tone
is transmitted. The blue component of

Fig 1—Martin M1 line timing.

Fig 3—Frequency response of the synchronization filter. (A) shows the whole response
curve, while (B) is a close-up of the peak region.

Fig 2—Synchronization detector overview.

the line is then transmitted. Each
pixel lasts 572 µs, thus the blue sig-
nal lasts t = 256 × 572 = 146,432 µs. G

During t1 = 572 µs, a 1500-Hz tone
is transmitted. Lastly, the red compo-

nent of the line is transmitted. Each
pixel lasts 572 µs, thus the red signal
lasts tG = 256 × 572 = 146,432 µs. Dur-
ing t1 =572 µs, a 1500-Hz tone is trans-
mitted. This is the end of the line.

 May/June 2003 5

Horizontal
Synchronization Method

This section is devoted to the hori-
zontal synchronization algorithm we
have developed. First, we consider the
need for such a software module. We
then describe the synchronization de-
tector. It is based upon a band-pass
filter followed by a linear Hough trans-
form. The linear Hough transform is
explained in a step-by-step approach.

Fig 4—Burst response of the synchronization filter. (A) shows the 1200-Hz burst; (B)
shows the burst as shaped by the filter response.

Fig 5—Time
response (solid) of
the FIR filter to a
rectangular window
dotted.

The Need for Horizontal
Synchronization

The reader may wonder why we
need such a synchronization detector.
Thanks to digital headers transmitted
before the image signal (referred to as
VIS code), software is able to detect
the beginning of a new image. It also
extracts from the digital header the
mode used by the transmitter. Then,
as the receiving software relies upon

a calibrated time base, it asynchro-
nously decodes the incoming signal,
and it does not use the horizontal-syn-
chronization signal any more.

Remember that we have decided to
focus on realistic receiving conditions.
The above mentioned method fails, for
instance:
• When fading occurs during the VIS,
• When QRM prevents the software

from detecting the start of image
signal or

• When the operator misses the begin-
ning of the transmission.
We will see that the forgotten hori-

zontal-synchronization signal can dras-
tically improve SSTV demodulation.

The Synchronization Filter: The
analog SSTV signal is first digitized—
thanks to the computer sound card—
at fs = 44,100 Hz. The resulting data
are then processed by the synchroni-
zation detector presented in Fig 2. This
incoming SSTV signal goes through a
digital recursive band-pass filter (also
known as an infinite-impulse response
filter or IIR).7 We have chosen a four-
pole Butterworth filter for its burst
time response.8 The center frequency
is fsync = 1200 Hz and the bandwidth
is 200 Hz. The coefficients of the IIR
filter are given in Table 1. The output
y[n] of the IIR filter is computed us-
ing Eq 2.

filter are given in T
y[n
ing Eq 2.

[] []
22

100

+−+
+=

bnxb

xbnx b nya [] [] []
[] []
[] []
[] []
[]4

32

14

32

1

4

32

14

32

100

−−
−−−−
−−−+
−+−+

−+=

nya

nyanya

nyanxb

nxbnxb

nxbnx b nya

(Eq 2)

The frequency response of this fil-
ter is plotted in Fig 3. The upper curve
displays the frequency response from
300 Hz to 3000 Hz, and the lower curve

Fig 6—The reference picture.

6 May/June 2003

is a closer look around the center
frequency.

We are also highly interested in the
behavior of this filter to a 1200-Hz
sine-wave burst. We have therefore
simulated a synchronization-like sig-
nal made of: 5 ms without signal,
5 ms with a 1200 Hz, unity-amplitude
sine wave, and 10 ms without signal.

The choice of a 5-ms, 1200-Hz sine
wave signal is realistic with respect
to both the original standard (black
and white) and the M1 (color) SSTV
modes.9 Both the input signal (Fig 4,
upper curve) and the output of the IIR
filter (lower curve) are plotted.

The 200-Hz bandwidth chosen dur-
ing the design is the lower bound one
can use. One can see in Fig 4 that the
output signal reaches unity amplitude
just before it starts decaying. This
bandwidth is a trade-off between noise
rejection and response time. It proved
efficient during the many experiments
carried out on-air with real SSTV M1
signals.

This filtered signal is detected
thanks to an absolute-value function
(the diode in Fig 2) along with the
original signal. The remaining blocks
are a poor-man’s power-spectrum es-
timator. The 50-tap digital low-pass
filter (a finite-impulse-response or FIR
filter) is a moving-average type. It acts
as a low-pass filter with a zero in its
frequency response at f / 50 = 882 Hz. s

Here’s another way of explaining the
behavior of this low-pass filter: It
outputs the correlation of the detected
signal with a rectangular window. This
rectangular window, lasting 50 / fs =
1.1 ms, is related to the desired time
resolution of the synchronization detec-

Fig 7—Output of the synchronization detector (M1 signal without
noise).

Fig 10—The synchronization signal—a 2D approach (with noise).

Fig 9—The synchronization signal—a 2D approach (no noise).

Fig 8—Output of the synchronization detector (M1 signal with
noise, A, versus without noise, B).

tor. The correlation gives an indication
of how much two signals look alike,
along with the time of this likelihood
measurement. A simulation result is
displayed in Fig 5. The dashed line is
the input signal, made of 5 ms without
signal, 1.1 ms with a unity-amplitude
signal and 3.9 ms without signal. It is
a rectangular window of 50 samples.
The bold continuous line in Fig 5 is the
output of the filter. The maximum value
(1 on Fig 5) is reached when the likeli-
hood is at its maximum.

Now, look back to Fig 2: This FIR
filter is applied to both raw and band-
pass filtered detected signals. The de-
tected value (the output of the diode
in the figure) can be seen as a voltage.
So squaring this value (the x2 block in
Fig 2) leads to a power, noted as Psync.

The raw power, Praw, is normalized
thanks to the gain K with respect to
its assumed bandwidth (3000 Hz can
be used as an upper bound for the av-
erage communication receiver). Now,
both power channels can be compared
against one another. The meaning of
this comparison can be related to the
following question: “Is there more
power in the 1100 to 1300-Hz range
than in the rest of the band?”

A simple threshold is set to decide
whether the SSTV input signal is a
synchronization signal or another
type—video, for instance, or some
QRM. During all the experiments, this
threshold has been set to two: The in-
coming signal is said to be a synchro-
nization signal when Psync > 2 × Praw.
Now, let us see how our synchron-

 May/June 2003 7

ization detector performs.
Simulation Results: Why do we

mention simulation results? A real,
noisy, faded SSTV signal coming from
the air would be nice; but it would be
very difficult to analyze. Unless we
have access to the original, clean sig-
nal, it is difficult to qualify the de-
modulator. Anyway, we will show some
results with simulated data.

Simulation Signals: The original
SSTV signal (the reference) has been
created with a stand-alone program
we have developed for this purpose. It
reads a bitmap (see Fig 6) 24-bit color
file and creates an M1-compliant mon-
aural sound file (.wav). It also has the
nice feature of adding noise to the pure
M1 signal.

The noisy signal includes Gaussian
noise. Its standard deviation from the
mean is 1, and its bias (or mean value)
is 0. This noise is then filtered by a low-
pass filter, an 8th-order Butterworth
IIR with a cutoff frequency of 2500 Hz.
The value of 2500 Hz is a realistic one
for SSTV signals.

This sound file is either used by our
SSTV software or transferred to a
CDROM for test purposes. This brand
new audio CD, playing on a CD player,
becomes the source of the SSTV signal
that is digitized by the sound card. This
solution has been extensively used
when comparing the performance of our
SSTV software against other programs.

Fig 7 plots the output of the syn-
chronization detector for a clean SSTV
M1 signal (without Gaussian noise).
The horizontal-synchronization pulses
are perfectly estimated. The period
between two pulses, measured on

Fig 7, is about 0.446 s. The theoretical
value is 4862 + 572 + (572) (3) + (256)
(572) (3) = 446,446 µs.

We have already mentioned that we
were interested in the behavior of this
synchronization detector when the
S/N is low. We have therefore created
a noisy M1 signal (S/N is almost 0 dB).
The output of the same software is dis-
played on the upper curve of Fig 8 for
this noisy signal. The reference signal
is plotted on the lower curve to make
comparison easier. At first sight, it is
very difficult to accurately detect hori-
zontal line synchronization out of this
1-D signal.

This first conclusion has led us to
think about another representation of
the same signal. The 1-D signal is in-
deed the output of the synchronization
detector, so the 1-D representation
may first come to mind. Yet this 1-D
signal actually results from a 2-D sig-
nal; namely, the original picture. Let
us plot the same output signal from
the synchronization detector as a pic-
ture, thus as a 2-D signal. We use the
following convention:
• A 0 in the 1-D signal (no synchroni-

zation signal) is displayed as a
black pixel.

• A 1 in the 1-D signal (a synchroniza-
tion signal) is displayed as a white
pixel.

• The width of the resulting picture is
XM1

• The height of the resulting picture
is limited by the total amount of
available synchronization samples.

= 1561 pixels.

The value XM1 = 1561 comes from
the length of one M1 line, 446,446 µs,

and the duration of one sample of
286 µs: 1561 = 446,446 / 286. The lat-
ter value of 286 µs has been chosen to
get an integral number of samples for
the synchronization signal (4862 / 286
= 17 samples) and for all other parts
of the M1 line.

The resulting picture is displayed
in Fig 9 for the M1 signal without
noise (the same one used for Fig 7). A
human being easily locates the syn-
chronization signal on the left.

The case of the noisy M1 signal
leads to the picture displayed in Fig
10. Even on this picture, coming from
a very noisy M1 SSTV signal, the
reader easily detects the synchroniza-
tion signal.

The question is, “How can an algo-
rithm accurately detect this vertical
line?” Assuming it is possible, we
would have built a robust synchroni-
zation detector based upon the whole
synchronization signal.

From a 2-D Picture to a
Synchronization Detector

The very first approach one can test
is a least-mean-square (LMS) ap-
proach. The problem can be stated this
way: Knowing the 2-D coordinates of
some points, the algorithm has to esti-
mate the abscissa of the vertical line
while minimizing some criteria.

It is a simple curve-fitting ap-
proach10 with a line described by Eq 3:

bx = (Eq 3)

The parameter b can be estimated
as the mean value of all the abscissas
of the white pixels. It works perfectly
when the M1 signal is clean (no noise),

Fig 11—Synchronization signal estimated thanks to LMS (no
noise, 250 lines).

Fig 12—Synchronization signal estimated thanks to LMS (with
noise, 250

8 May/June 2003

Fig 13—The Hough algorithm for a vertical line.

Fig 14—The accumulator corresponding to Fig 9 (M1 signal
without noise) showing occurrences of b values (bline = 9).

Fig 15—The accumulator corresponding to Fig 10 (M1 signal with
noise) showing occurrences of b values (bline = 11).

and thus when the synchronization
signal is perfectly recovered. The re-
sult from a LMS approach is displayed
in Fig 11. The grey pixels are the out-
put of the synchronization detector,
and the white vertical line is the esti-
mated one, thanks to the LMS. The
estimated b is 18, which is correct.

This very same method totally fails

when the signal is noisy (see Fig 12).
The reader may wonder why such a
popular method fails. The answer is
simple: The parameter to be esti-
mated, a constant, is corrupted by a
noise with a nonzero mean. Here, the
noise is produced by the synchroniza-
tion detector. This is why we have used
another approach that is robust

against this kind of noise and is pre-
sented in the next section.

Using the Linear Hough Transform
The method we have used is robust

against the kind of noise generated by
the synchronization detector. It relies
upon the linear Hough transform. We
will first describe it using a step-by-step

// Input:
// pixel: an array of size (xMax+1,yMax+1)
// Output:
// bLine: the b parameter of the synchronization vertical line.
// maximum: the number of occurence of this b value.
//
// first step
for y=0 to yMax

for x=0 to xMax
if pixel(x,y) is white

// estimate b parameter
b=x
// use the accumulator and take this new value
// into account
accumulator [b] =accumulator [b]+1

end if
end for

end for
// second step
maximum=0
for b=0 to xMax

if (accumulator[b]>maximum)
maximum=accumulator[b]
bLine=b

end if
end for

 May/June 2003 9

approach in a very simple situation. We
will then introduce the linear Hough
transform as presented in Reference 11.
We will also illustrate it using another
example in a step-by-step approach.

Estimating the b Parameter
of a Vertical Line

This simple case deals with the
same vertical line described by Eq 3.
Let’s have a closer look at either Fig 9
or 10. You can easily see where the
vertical line is (on the left of both pic-
tures). We could also write that most
of the pixels on the left belong to the
same vertical line, whereas the remain-
ing pixels do not belong to the same
vertical line. This idea can be trans-
lated into a two-step algorithm.

First step: For each white pixel,
compute the line parameter b of the
vertical line to which it belongs.

Second step: Among all the result-
ing b parameters, find the one with the
highest occurrence.

The algorithm in Fig 13 performs
these two steps. We have introduced
an accumulator, which is an array. It
is used to compute and store the num-
ber of occurrences of the b parameters.

This algorithm has been used on the
very same data from the synchroniza-
tion detector. Fig 14 plots the accumu-
lator corresponding to the clean M1
signal (from Fig 9). Even in the pres-
ence of noise, the algorithm is still able
to recover the synchronization. Fig 15
plots the accumulator corresponding to
the noisy M1 signal of Fig 10. The b
parameter is correctly estimated with
this method: The error is 2/1561.

The Linear Hough Transform
This section could have been en-

titled “Estimating the Parameters of
a Straight Line.” We have seen in the
previous section how to estimate the
b parameter of a vertical line. It was a
simple case of the linear Hough trans-
form. We are now going to introduce
the general linear Hough transform;
we will illustrate its use through a
step-by-step computation.

No More Slanted Pictures!
We have already seen that the re-

sults were convincing with this simple
estimator, even in the presence of
noise. The reader may wonder why we
proceed further.

Have you ever seen a beautiful SSTV
picture spoiled because it is slanted?
How many times have you thrown away
a rare DX picture just because of a badly
calibrated time base?

A badly calibrated time base—at ei-
ther the transmitter or receiver side—
results in a slanted picture (see Fig 16,
for instance). Much modern SSTV soft-

// first step
for each pixel (x,y) of interest

for each possible q
computes d = -x sin(q) + y cos(q)
accumulate the set (d, q)

end for
end for
// second step
find in the accumulator the set (d, q)
with the highest occurrence

Fig 18—The Hough algorithm for a straight line.

Fig 16—A slanted SSTV picture.

Fig 17—A slanted synchronization signal.

ware allows the user to finely tune its
time base to get perfect pictures. Actu-
ally, the received pictures are perfect as
long as the transmitter time base is
correctly calibrated.

Could we imagine an automatic
system that relies only on the previ-
ously described “synch” detector? Such
a system would receive a SSTV signal
and output a vertical picture, even if
the time base were not calibrated. We
can design such a system. From a prac-
tical point of view, one can improve our
SSTV synch detector—and thus the
SSTV software—using the linear
Hough transform.11

The Hough transform is named af-
ter its inventor (see the US patent).12
It is widely used in the field of image
processing.13 We will see how to use
for SSTV synch detection.

The slanted picture of Fig 16 is
linked with the 2-D slanted synch sig-
nal (see Fig 17). The linear Hough
transform allows estimation of the
parameters describing a straight line.
Eq 4, used to describe this line, is not
the usual y = ax + b, but:

qyqxd cossin +−=

(Eq 4)

Eq 4 is better for our application, as
it can describe any straight line:
vertical, horizontal or skew. The usual
equation y = ax + b fails to describe a
vertical line (as long as a is finite).
Moreover, Eq 4 closely relates the slope
of the line and the parameter q, which
is useful for the Hough transform.

The linear Hough transform relies
upon a 2-D accumulator or array. The
two dimensions of the accumulator are
linked with the two parameters (d, q)

of the line. The algorithm, also a two-
step, is described in Fig 18.

A Step-by-Step Computation
An example illustrates the algo-

rithm of Fig 18. Consider a very simple
picture. Its size is 5×5. The round dots
are the pixels of interest (see Fig 19).

During this computation, we are
only looking for horizontal, vertical
and diagonal lines. Thus, the corre-
sponding values of q are 0°, 45°, 90°
and 135°.

Step One
Let us start with the pixel located

at coordinates (–1, –2). According to the
algorithm, for each possible value of q
we have to compute the corresponding
d using Eq 4. The results are tabulated

10 May/June 2003

in Fig 20 (step 1). We must point out
that d, computed using Eq 4, is a real
number. It is represented by a floating-
point number (see the third column).
As this number is used as an index of
an array (the accumulator), this float-
ing-point number is rounded to the
nearest integer (see the fourth column).
The slight difference between the ex-
act value of d and the value stored in
the accumulator and used by the algo-
rithm will cause an error in the esti-
mated parameters. This error will be
obvious when looking at the resulting
estimated line. Nevertheless, it is not
an important error, and it has no im-
pact on our application.

The meaning of the first line of
Fig 20 is as follows: the pixel (–1, –2)
belongs to the line whose equation is,
according to Eq 4, –2 = –x sin (0) + y
cos (0). Alternatively, one can write
that the pixel (–1, –2) belongs to
the line whose parameters (d, q) are
(–2, 0). Now we could add one to the
accumulator value located at (–2, 0).
The accumulator would now reflect
that there is one and only one line
whose parameters are (–2, 0).

The resulting d values, along with
their corresponding q values, are used
to fill the accumulator. At the beginning,
the accumulator is cleared—that is,
filled with zeros. Using Fig 20, it is easy
to build the accumulator at step 1:

q = 0° leads to d = –2; ACC[d, q] =
ACC[d, q] + 1

d, q] =

q = 45° leads to d = –1; ACC[d, q] =
ACC[d, q] + 1

q = 90° leads to d = 1; ACC[d, q] =
ACC[d, q] + 1

q = 135° leads to d = 2; ACC[d, q] =
ACC[d, q] + 1

The bold numbers in the accumula-
tor represent the values different from
the previous step. The picture on the
left stands for the visual counterpart
of the calculations. All the possible lines,
corresponding to the tabulated values
of q, are drawn on this figure.

Step Two
The same method is applied to the

pixel (0, –1). The computed d for all
the q values are tabulated in Fig 20.

Steps Three to Eight
The same method is applied to re-

maining pixels. The computed d for all
the q values are tabulated in Figs 20-
22.

The final values in the accumula-
tor at (d, q) are the number of points
belonging to the line (d, q). In our
example, the highest value, 4 (see Fig
22) belongs to the line described by the
set (d = –1; q = 45°). The line described
by these parameters is plotted as a
thick line in Fig 23, whereas the line

calculated by LMS is the dashed line.
Although not perfect (because of a
rounding effect), the Hough estimation
is better than the LMS.

. line.

The Case of the Slanted Picture

Where funk
quency of the How to Estimate the Sampling

Frequency of Your Sound Card
Unfortunately, this frequency is not

as accurate as one might expect: the
44,100 Hz may be biased. A 40-Hz bias
is common. This problem is well
known in the SSTV community.

The following equations are based
upon three hypotheses:

1. At time t = 0, the software is de-
modulating the very first video
sample, located on the upper left cor-
ner (0 on Fig 24);

- = xA + y

2. The M1 signal is perfect—that is,
compliant with the timings defined by
G3OQD;

3. The assumed sampling fre-
quency, noted as fS, is used to demodu-
late the M1 SSTV picture. This pic-
ture is available for the sampling fre-
quency estimation (see Fig 24 for a
model of such a slanted picture). BA tt =

The coordinates of video sample B
are (xB, yB); those of A are (xA, yA.
Notice that one has y = y . A B

One video sample lasts t1, that is
572 µs. During one second, the sound
card digitizes f

 sound
one M1

NM1
FS samples. Thus, one M1

video sample, lasting t1, requires NM1
sound card samples, with NM1 defined
by Eq 5:

(Eq 5)

Please note that NM1 is not an inte-
ger. The video sample B (see Fig 24) is
received at time tB. The total number
of sound card samples corresponding
to the video sample B is: iB × NM1 with
iB the index of the video sample B, de-
fined by iB = xB + yB × XM1. Where XM1
is the number of video samples per M1

Fig 19—A simple 5×5 picture.

line. The video sample B is received
at time tB defined by Eq 6.

(Eq 6)

Where funknown is the unknown fre-
quency of the sound card (if B ≠ A, then
funknown ≠ fS). From Eqs 5 and 6, we
have:

unknown
S1BB

1

f
ftit ××=

(Eq 7)

As the received M1 SSTV signal is
based upon the exact timings, we can
infer that the video sample B should
be located in A (see Fig 24).

The video sample A, which index iA
= xA + yA × XM1, occurs at time tA:

M1A

S
M1AA

1

ti

f
Nit

×=

×=

BA tt =

(Eq 8)

As we know that the video sample
B should be located in A, we can write
Eq 9:

(Eq 9)
Substituting Eqs 6 and 8 into Eq 9

leads to:
(Eq 10)

Finally, we can compute the un-
known frequency funknownwith Eq 11:

S
A

B
unknown f

i

i
f = (Eq 11)

Such a simple equation easily al-
lows us to accurately estimate the
sampling frequency of the sound card.
In fact, the accuracy of our approach
is only limited by the quality of the
slope estimation. That explains why
we needed a very-high-performance
synchronization detector.

Experiments carried out with real
noisy SSTV signals allowed us to esti-
mate the sampling frequency of our
sound card. The overall quality of the
estimator is easily checked: The pic-
ture demodulated with the estimated
funknown is perfectly vertical.

Of course, a similar approach could
be used when the sound-card sam-
pling frequency is known, but the pic-
ture is nevertheless slanted. Such a
situation occurs when demodulating
a signal replayed on a CD player,
whose frequency is not as accurate as
one might think. The slope of the pic-
ture leads to an ideal value of fS. When
demodulating the same signal with
this newly computed fS, the formerly
slanted picture now appears perfectly
vertical. The very-high-performance

 May/June 2003 11

Step 3: Computing Parameter d for Pixel (1,0)

q –x sin q + y cos q d round(d)

0° –1 × 0.00 + 0 × 1.00 0.00 0
45° –1 × 0.85 + 0 × 0.53 –0.71 –1
90° –1 × 0.89 + 0 × –0.45 –1.00 –1
135° –1 × 0.09 + 0 × –1.00 –0.71 –1

The Accumulator After Step 3

ACC 0° 45° 90° 135°

d = –2 1 0 0 0
d = –1 1 3 1 1
d = 0 1 0 1 0
d = 1 0 0 1 1
d = 2 0 0 0 1
d = 3 0 0 0 0

Step 2: Computing Parameter d for Pixel (0, –1)

q –x sin q + y cos q d round(d)

0° 0 × 0.00 –1 × 1.00 –1.00 –1
45° 0 × 0.85 –1 × 0.53 –0.71 –1
90° 0 × 0.89 –1 × –0.45 –0.00 0
135° 0 × 0.09 –1 × –1.00 0.71 1

The Accumulator After Step 2

ACC 0° 45° 90° 135°

d = –2 1 0 0 0
d = –1 1 2 0 0
d = 0 0 0 1 0
d = 1 0 0 1 1
d = 2 0 0 0 1
d = 3 0 0 0 0

Fig 20—Hough transform—Steps 1 to 3.

Step 1: Computing Parameter d for Pixel (–1, –2)

q –x sin q + y cos q d round(d)

0° 1 × 0.00 –2 × 1.00 –2.00 –2
45° 1 × 0.85 –2 × 0.53 –0.71 –1
90° 1 × 0.89 –2 × –0.45 1.00 1
135° 1 × 0.09 –2 × –1.00 2.12 2

The Accumulator After Step 1

ACC 0° 45° 90° 135°

d = –2 1 0 0 0
d = –1 0 1 0 0
d = 0 0 0 0 0
d = 1 0 0 1 0
d = 2 0 0 0 1
d = 3 0 0 0 0

12 May/June 2003

Fig 21—Hough transform—Steps 4 to 6.

Step 4: Computing Parameter d for Pixel (–2, 1)

q –x sin q + y cos q d round(d)

0° 2 × 0.00 + 1 × 1.00 1.00 1
45° 2 × 0.85 + 1 × 0.53 2.12 2
90° 2 × 0.89 + 1 × –0.45 2.00 2
135° 2 × 0.09 + 1 × –1.00 0.71 1

The Accumulator After Step 4

ACC 0° 45° 90° 135°
d = –2 1 0 0 0
d = –1 1 3 1 1
d = 0 1 0 1 0
d = 1 1 0 1 2
d = 2 0 1 1 1
d = 3 0 0 0 0

Step 5: Computing Parameter d for Pixel (–1, 1)

q –x sin q + y cos q d round(d)

0° 1 × 0.00 + 1 × 1.00 1.00 1
45° 1 × 0.85 + 1 × 0.53 1.41 1
90° 1 × 0.89 + 1 × –0.45 1.00 1
135° 1 × 0.09 + 1 × –1.00 0.00 0
The Accumulator After Step 5

ACC 0° 45° 90° 135°

d = –2 1 0 0 0
d = –1 1 3 1 1
d = 0 1 0 1 1
d = 1 2 1 2 2
d = 2 0 1 1 1
d = 3 0 0 0 0

Step 6: Computing Parameter d for Pixel (2, 1)

q –x sin q + y cos q d round(d)

0° –2 × 0.00 + 1 × 1.00 1.00 1
45° –2 × 0.85 + 1 × 0.53 –0.71 –1
90° –2 × 0.89 + 1 × –0.45 –2.00 –2
135° –2 × 0.09 + 1 × –1.00 –2.12 –2

The Accumulator After Step 6

ACC 0° 45° 90° 135°
d=–2 1 0 1 1
d=–1 1 4 1 1
d=0 1 0 1 1
d=1 3 1 2 2
d=2 0 1 1 1
d=3 0 0 0 0

 May/June 2003 13

Fig 22—Hough transform—Steps 7 and 8.

Step 8: Computing Parameter d for Pixel (–1, 2)

q –x sin q + y cos q d round(d)

0° 1 × 0.00 + 2 × 1.00 2.00 2
45° 1 × 0.85 + 2 × 0.53 2.12 2
90° 1 × 0.89 + 2 × –0.45 1.00 1
135° 1 × 0.09 + 2 × –1.00 –0.71 –1

The Accumulator After Step 8

ACC 0° 45° 90° 135°

d = –2 1 0 1 1
d = –1 1 4 1 2
d = 0 1 0 1 2
d = 1 3 1 3 2
d = 2 2 2 2 1
d = 3 0 1 0 0

Step 7: Computing Parameter d for Pixel (–2, 2)

q –x sin q + y cos q d round(d)

0° 2× 0.00+2× 1.00 2.00 2
45° 2× 0.85+2× 0.53 2.83 3
90° 2× 0.89+2× –0.45 2.00 2
135° 2× 0.09+2× –1.00 0.00 0

The Accumulator After Step 7

ACC 0° 45° 90° 135°

d = –2 1 0 1 1
d = –1 1 4 1 1
d = 0 1 0 1 2
d = 1 3 1 2 2
d = 2 1 1 2 1
d = 3 0 1 0 0

demodulator is at the heart of such
magic.

No more slanted pictures, we wrote.
Now it is done! From a practical point
of view, however, it is not an excuse
for transmitting non-M1-compliant
signals!

.
is straightforw

The Video Demodulator
A lot of work and time has been

devoted to the synchronization detec-
tor described in the first part of this
article. SSTV receiving software must
also demodulate the video signal.
Lastly, it must display it. We will now
focus on video demodulation.

From Frequency to Luminance
Can we improve frequency estima-

tion? The reason behind this question
is straightforward: Each video sample
can be recovered using Eq 12, which
is based upon Eq 1:

lum
blackwhite

black1 max
ff

ff
lum

−
−= (Eq 12)

Eq 12 will output the correspond-
ing luminance, which will be stored in
an array for further processing, such
as for full-color display.

Unfortunately, such a beautiful
equation leads to another question:
How can we estimate this unknown
frequency f1? Many solutions have
been proposed and used during the
past decades. We have already
summed up three important strategies

at the beginning of this article:
• Analog filters can convert a fre-

quency to a voltage. This voltage is
used to drive either an SSTV monitor
(see Note 2) or digitized and processed
on a computer (see Note 4).

• The signal is crudely digitized
thanks to a two-level (or 1-bit) A/D
converter. The frequency is then esti-
mated using, for instance, a period
estimation (the method used in the
Pasokon system).14

• The signal is digitized thanks to
a decent A/D converter. The digital sig-
nal is then processed to estimate the
frequency.

As we had already designed a ro-
bust synchronization estimator, the
video demodulator performance had to

14 May/June 2003

Fig 25—The adaptive scheme for frequency estimation.

match that high-quality level.
There are many well-known methods to estimate the fre-

quency of a signal. One can use a period estimator, a phase-
locked loop or a fast Fourier transform (FFT). There are many
other methods, such as multiple-window spectrum estima-
tion15 and the wavelet transform. We have not thoroughly
investigated the use of the last two approaches in the con-
text of SSTV; it might be something worth looking at.

It is obvious that for high S/N many methods provide good
results—and particularly, a small bias on the estimated fre-
quency. When S/N becomes low, things are not so clear. Stud-
ies have been conducted by several authors to evaluate the
behavior of estimators with a noisy signal.16, 17 These papers
show that the period estimator is among the worst methods,
while the FFT is the least-biased approach.

The discrete Fourier transform (DFT), often implemented
as the FFT, is an excellent frequency estimator:18, 19, 20

“When the data consist of uniformly sampled time
domain data containing some type of harmonic oscilla-
tions, the discrete Fourier transform is almost univer-
sally used as the frequency estimation technique. This
is done for a number of reasons, but primarily
because the technique is fast and experience has shown
that the frequency estimates obtained from it are often
very good.”21
Even in the presence of noise, one can extract meaning-

ful information from the power spectrum of the signal. Our
frequency estimator relies upon both the discrete Fourier
transform and the FFT (for performance issues only).

When the S/N is high, the user expects a high-quality
picture. When the S/N is low, or when it suddenly decreases
(due to fading, for instance), such quality cannot be main-
tained. A common thought is that the quantity of informa-
tion transmitted per second decreases along with the S/N.
This is perfectly true (see Shanon’s famous paper,22 for a
mathematical explanation). Many everyday-life examples
follow this rule: a CW signal is easier to recover using a
narrow filter (200 Hz, for instance) than when using an
SSB filter (3000 Hz, for instance). The signal can be recov-
ered with the CW filter, whereas it could not with the stan-
dard SSB filter.

Keeping this idea in mind, we may wonder what a SSTV
demodulator should do? Our answers are summarized
below:

• It should provide a high-resolution picture when the
S/N is high.

• It should gracefully degrade when the S/N decreases.
The resulting video resolution would then be lower than
in the theoretical case, as set by G3OQD.

• It should decide on its own which quality is the best
during the SSTV demodulation. It should always provide
the best trade-off between noise immunity and picture reso-
lution.

Can a software demodulator do that? Fortunately, the
answer is yes!

Remember that the frequency resolution of the DFT is
closely related to the number of samples used to compute
the power spectrum. When more samples are used the fre-
quency estimation becomes more accurate.

The only requirement is to design a magic box that
chooses the best length for the time series the DFT will
process. Such a box must estimate the S/N of the SSTV
signal. It then converts this S/N to the appropriate length
thanks to a function f(S/N). This function can be stored
as a predetermined look-up table. Fig 25 shows the idea
behind this adaptive scheme.

The S/N Estimator
This part has been very difficult to design. Some meth-

ods make use of silence to estimate the power of noise.23 Our
magic box cannot rely upon this approach because a typical
SSTV signal lasts about two minutes and is continuous. We
have therefore designed a S/N estimator that runs in real-
time; that is, during actual SSTV reception.

A simplified SSTV power spectrum is depicted in
Fig 26. It comprises the video signal plus some noise (the
synchronization signal is not considered here). The pur-
pose of a S/N estimator is to estimate: (1) the power of the
SSTV-only signal for a given bandwidth; and (2) the noise
power for a given bandwidth.

Let us split the spectrum into three bands, according to
Fig 27:

1. A video-plus-noise band, ranging from 1500-2300 Hz.
2. A low-frequency noise-only band, ranging from

300-1100 Hz. The lower bound, 300 Hz, is realistic with an
SSB receiver. The upper bound, 1100 Hz, has been chosen
to avoid the synchronization signal (centered on 1200 Hz).

3. A high-frequency noise-only band, ranging from
2500-2700 Hz.

The total power in each band is computed thanks to a
2048-sample FFT (fs = 44,100 Hz) after windowing the in-
coming signal with a Hanning window (see Reference 19,

Fig 24—Model of a
slanted picture.

Fig 23—Hough
versus LMS
approximations.

 May/June 2003 15

Fig 26—A simplified spectrum of a noisy
SSTV signal.

p 20 for some window functions). We then introduce two
new variables, namely Pvideo_noise and Pnoise_only.

(
(

• Pvideo_noise is the total signal power in the video band (1500-
2300 Hz).

 (1500-
noise_only

noise_onlynoise PBW

receiverBW
PP =

• Pnoise_only is the total signal power in the lower band (300-
1100 Hz) plus the total signal power in the higher band
(2500-2700 Hz).

Under the following assumptions:
• The noise power is constant across all frequencies. If not,

one can measure the global information filter response
of the receiver and make up for it.

signal PP =

• The SSTV video signal lies from 1500 to 2300-Hz.
One can write:

PPP signalevideo_nois +=

One can write:

receivBW

PBW
PPP video_n

noisesignalevideo_nois +=

()
()

(Eq 13)

receiverBW

PBW
PP noise_only

noisenoise_only =

()
()

(Eq 14)

where:
BW(receiver) = receiver bandwidth (2700 – 300 = 2400 Hz)
BW(Pvideo_noise) = bandwidth of the video signal (800 Hz for

SSTV)
BW(Pnoise_only) = total bandwidth used for noise-power

estimation. According to Fig 27, it is (1100 – 300) + (2700
– 2500) = 1000 Hz

Psignal = SSTV video signal power for a video bandwidth
BW(Pvideo_noise

Pnoise = noise po
BW(receiver).

From Eq 14,

video_noise
P

)
noise = noise power for the receiver bandwidth

BW(receiver).
From Eq 14, one can write:

noise_onlyPBW

From Eqs 13 and 15,

PBW

receiverBW
PP

noise_only
noise_onlynoise =

noise_only
noise_onlynoise PBW

receiverBW
PP =

()
()

(Eq 15)

From Eqs 13 and 15, we get:

(
(receivBW

PBW
PPP

PBW

receiverBW
PP

video_n
noiseevideo_noissignal

noise_only
noise_onlynoise

−=

=

(Eq 16)

And expanding Eq 16, one has:

()
()

(
(n

vi
noise_onlyevideo_noissignal

noise_only
noise_onlynoise

PBW

PBW
PPP

PBW

receiverBW
PP

−=

=

(Eq 17)

The S/N is then computed by:









=

noise

signallog10/
P

P
NS (Eq 18)

Notice that we can bound the minimum ratio Psignal /
Pnoise to 0.01 (–20 dB), a value far below realistic condi-
tions for SSTV reception. This value will be used in the
sequel.

Results
A Martin M1 signal is generated. Gaussian noise is then

created and filtered by the same low-pass filter used for
synchronization detector tests, an 8th-order Butterworth
IIR with a cutoff frequency of 2500 Hz. It simulates the
filters of the receiver.

Nine different amounts of vnoise were added to the pure
M1 signal. We have arbitrarily chosen: 3, 2, 1.5, 1,
1/1.5, 1/2, 1/3, 1/6 and 1/10 times the original amplitude of
the noise. Please notice that such a simulation only fo-
cuses on noisy SSTV signals and that it does not consider
QRM. The estimated S/N is plotted for the nine experi-
ments, along with the input noise power, in Fig 28.

Here are a few comments about that figure. The refer-
ence noise power, denoted as “o = input,” is computed by 10
log((vnoise)

–2). The amplitude of the signal is one. Notice there
is an offset between the input noise power and the estimated
S/N. That is caused by the way the noise power is computed;
that is, without appropriate scaling. It is not important for
our application, as a gain between these values is converted
into an offset in the logarithmic scale.

We already know the estimator is biased. Another in-
teresting simulation gives an idea about the standard de-
viation from the mean s of this estimator. S/N

Using the same algorithms 100 times for each experiment,

Fig 27—Splitting the spectrum into three bands.

16 May/June 2003

one can compute the standard deviation
sS/N from the mean value µS/N of the
S/N. We have displayed the results in
Fig 29: the mean value µS/N as “×,” along
with the upper “∆” and lower “∇”
bounds. These bounds are related to the
mean value thanks to: µS/N + σS/N and
µS/N – σS/N.

We may conclude that the estima-
tor performs well for S/N > 0 dB. The
standard deviation from the mean in-
creases for lower values—the results
will be less accurate. Moreover, we can
see in Fig 29 that the method tends to
underestimate the S/N for very low
values. Anyway, the dynamic range of
the estimator extends to limits beyond
realistic receiving conditions. It is in-

Fig 28—Original noise power (o) and estimated S/N (x).

Fig 31—The
reference
picture

Fig 30—37-point Chebyshev window.

Fig 29—Standard deviation from the mean of the estimated S/N
(o = input noise; x = estimated S/N).

deed very difficult to recognize a SSTV
signal at a very low S/Ns.

Estimating the Luminance
As explained above, the luminance

demodulation is based upon a DFT of
the incoming signal. The number of
samples used to compute the DFT is
driven by the estimated S/N, as a func-
tion f(S/N). We are now going to
describe the luminance demodulation
system and the trade-off we had to face.

High-Quality SSTV
How many samples do we have to

use to get an accurate estimate of the
SSTV signal? We have already ex-
plained the idea behind our adaptive

scheme. We now focus on the highest-
quality demodulator. It is the upper
bound of the luminance demodulator.
Using a trial-and-error process, we fi-
nally decided to use a 37-point
Chebyshev window (see Fig 30).

The windowed signal is then fed into
a DFT. This DFT only computes the rel-
evant part of the spectrum, thus sav-
ing many microprocessor cycles. The
output power spectrum is then followed
by a parabolic interpolation—a common
practice in frequency estimation.

This choice leads to excellent fre-
quency estimations for high S/Ns. More-
over, the horizontal resolution allowed
by such a number of points is compat-
ible with G3OQD specifications.

 May/June 2003 17

Fig 32—Picture demodulated with the 37-point DFT.

Fig 35—
Noisy picture
demodulated
with the
adaptive
method.

Fig 34—
Noisy picture
demodulated
with a 37-
point DFT.

Fig 33—Demodulated signal, N = 37, line 128.

Some simulation results of this de-
modulator are presented below. We have
used the same test picture as in Fig 6.
The demodulated picture is presented
in Fig 31. The luminance of the 128th
line of the test picture is displayed in
Fig 32. The luminance of the demodu-
lated picture is displayed in Fig 33. One
can check that the demodulated signal
is very close to the reference. The only
difference is a slight shift between the
original and the demodulated pictures.
It produces the black vertical line on
the right. It will be fixed in a future
release of the software.

This horizontal shift prevents us
from using the usual peak S/N to esti-
mate image quality. A far better qual-
ity estimate is to estimate bias and the
standard deviation from the mean

across a vertical line. The choice of a
vertical line allows us to use samples
that are not correlated. That topic is
far beyond the scope of this paper.24

A Demodulator for a Low S/N
When the S/N is low, the software

chooses a longer window—a Hanning
window. The lengths used in the soft-
ware range from 64-2048 points. The
windowed signal is then followed by a
FFT. Only the relevant part of the es-
timated spectrum is used to recover
the frequency. Any maximum of the
power spectrum outside of the video
band (1500-2300 Hz) is excluded, thus
helping to mitigate picture degrada-
tion induced by QRM.

The very same software has been
used to demodulate a very noisy sig-

nal (more noise than SSTV signal).
Two resulting pictures are presented:
One was demodulated with a 37-
sample DFT (Fig 34), and another
demodulated with the adaptive,
S/N-based demodulator (Fig 35).

We have also plotted the same
128th line using the following conven-
tion: The continuous line is for the
adaptive scheme; the dots are for the
37-point DFT (see Fig 36). We can con-
clude the adaptive scheme, under
these conditions, outperforms the ba-
sic demodulator.

Implementation Issues
The whole software has been coded

in C++, some parts being C functions
with a C++ wrapper. It was developed
using Borland C++ Builder version 3

18 May/June 2003

(professional edition for students—the
project started a while ago). More re-
cently, it has also been compiled with
version 5 of the same product without
trouble.

The DFT relies upon two kinds of
modules: a plain DFT and a FFT. The
DFT is used for N = 37 points. Using
some recent C++ coding techniques,
the compiled code provides us with a

Fig 38—BV4DC’s picture, adaptive.

Table 1—IIR Synchronization Filter Coefficients

b
0
 b1 b2 b3 b4

1.9897E–004 0 –3.9794E–004 0 1.9897E–004
a

0
 a1 a2 a3 a4

1 –3.9024E+000 5.7672E+000 –3.8245E+000 9.6050E–001

Fig 39—Same signal, demodulated with other common SSTV
software.

Fig 36—A noisy picture demodulated with both N = 37 and
adaptive techniques, line 128.

Fig 37—BV4DC’s picture, N = 37.

very short execution time on a proces-
sor from the Pentium family. It relies
upon a clever use of templates for the
dot product of vectors.26 As this topic
is far from the scope of this paper, but
of high interest to anyone “cooking”
and coding DSP modules, we invite the
interested reader to view references
on the topic.27, 28

The FFT is used for both the video

demodulator and the S/N estimator. We
have used the “Fastest Fourier Trans-
form in the West” library, also known
as FFTW (see www.fftw.org).29, 30 This
software is licensed under the GNU
General Public License (GPL, see
www.gnu.org). The sound capture
under the Windows operating system
is a modified version of the code pub-
lished in Dr Dobbs Journal.31As it uses

 May/June 2003 19

software released under the GPL, our
SSTV software is also released under
the GPL. Look for the source code at
roland.cordesses.free.fr/sstvrep
under “RealTime Processing.”

Experimental Results
The program described here, run-

ning under the Windows operating
system, can only receive M1 SSTV sig-
nals. While not having all the bells and
whistles found in today’s software, it
has been designed to match various
experimental conditions. The way the
picture appears on the PC screen is
close to any SSTV program, but we can
point out some unusual features our
software presents.

• The flux of SSTV lines is not con-
stant and changes with the levels of
noise and interference.

• When one tunes a SSTV transmis-
sion the beginning of which has been
missed, some strange colors are first
presented on the screen; but after a few
seconds, the system resynchronizes it-
self even in presence of noise or QRM.

• At the end of a slanted picture, the
program “unslants” it automatically.

• The result file presents some sta-
tistical information associated with a
received picture and helps one under-
stand how the program processed the
SSTV signal.

Moreover, the user can store not
only the received picture (BMP file)
but also the associated audio signal
(WAV file). It is therefore possible to
replay the audio file as often as de-
sired to experiment with different pro-
cessing configurations. During our
experiments, we produced many au-
dio CD files. Thus we could test not
only the various capabilities of our
program, but also compare them to
other popular SSTV software.

Figs 37 through 39 show examples
of a picture transmitted by BV4DC on
the 15-meter band. The propagation
changed quickly and the signal, which
was good at the beginning of the trans-
mission, suddenly dropped with a slow
and deep fading. Some interference
appeared at the end of the picture.

Fig 37 presents the BV4DC picture
as received with the 37-sample DFT,
while Fig 38 shows the same signal
demodulated with the adaptive, S/N
based demodulation. It is clear that
this last picture is far less noisy than
the first, but it does not have the same
sharpness. The adaptive algorithm is
doing a nice job under those poor con-
ditions, and we can accept easily the
small loss of picture resolution.

Fig 39 is a picture from the same
audio signal produced by one of the
best available programs we have tested.
The picture quality is slightly better

than that of the 37-samples FFT of our
software, but far behind that of the
adaptive method shown in Fig 38.

Conclusion
We have presented some unconven-

tional ways of processing SSTV syn-
chronization signals and an adaptive
approach to extract luminance infor-
mation. The results obtained with our
program making use of these algo-
rithms are spectacular, especially
when receiving conditions are poor.

As a final word, when we were re-
viewing the papers presented in the
bibliography, we were very impressed
by the conclusion in Reference 3: “We
can be assured that picture and graphi-
cal processing by computer will shortly
pervade many aspects of our lives.” That
sentence, written more than 30 years
ago and before the introduction of the
microprocessor, was really prophetic
and has been subsequently verified!

Acknowledgements
First of all, I would like to thank

Professor Jean Gallice. Back in 1996,
he spent many hours casting a new
light on frequency estimation. He is
the man behind our DFT idea.

Thanks to G3OQD, the father of the
popular Martin M1 mode. He kindly
sent us the exact timings of the M1
mode (see Note 1).

And lastly, we must mention (in al-
phabetical order): Donovan, Bob Dylan,
Tom Paxton; Peter, Paul and Mary.
Thanks for the musical background!

Notes
1Martin Emerson G3OQD. M1 technical

specifications in personal communication,
February 1993.

2C. Macdonald, “A Compact Slow Scan TV
Monitor,” QST, Mar 1964, pp 43-48.

3Th. Cohen, H. L. Husted, and P. R. Lintz,
“Computer Processing Slow-scan Television
Pictures,” ham radio, Jul 1970, pp 30-37.

4J. R. Montalbano, “The ViewPort VGA
Color SSTV System,” 73 Amateur Radio
Today, Aug 1992, pp 8-16.

5R. Cordesses and L.Cordesses, “SSTV
couleur et Fax sur compatible IBM PC,” (in
French) Radio REF, juillet-aôut 1994,
pp 23-27.

6The ARRL Handbook for Radio Amateurs
(Newington, Connecticut: ARRL, 2000;
ISBN 0-87259-183-2), Chapter 12, p 12.44.

7C. Marven and G. Ewers, A Simple Ap-
proach to Digital Signal Processing (Texas
Instruments, 1994; ISBN 0-904 047-00-8),
Chapter 4.

8An analog Bessel filter is a better choice
than an analog Butterworth filter for this
kind of application. Unfortunately, we are
not able to design a digital Bessel filter.

9The so-called Scottie 1 or S1 color mode
may use a longer horizontal synchroniza-
tion signal. Unfortunately, we have never
been able to get information from the
creator of this mode. The author of

JVComm32, DK8JV, has kindly sent us the
timings he uses for his software for the S1
mode. Design and simulations should be
done with a 10-ms burst for the S1 mode.

10W. Press, S. Teukolsky, W. Vetterling,
and B. Flannery, Numerical Recipes in C
(Cambridge University Press, 1994; ISBN
0-521 43108 5) Chapter 15.

11R. O. Duda and P. E. Hart, “Use of the
Hough Transformation to Detect Lines and
Curves in Pictures, Communications of the
ACM (Association for Computing Machin-
ery), 15:11-15, Jan 1972.

12P. V. C. Hough, Method and Means for
Recognizing Complex Patterns, US Patent
Specification US3069654, Dec 1967.

13J. Illingworth and J. Kittler, “A survey of
the Hough transform,” ACM Computer Vi-
sion, Graphics, and Image Processing,
Vol 44, Issue 1, pp 87-116, Aug 1988.

14J. Langner, “Slow-Scan TV: It isn’t Expen-
sive Anymore!” QST, Jan 1993, pp 20-30.

15D. J. Thomson, “Highlights of Statistical
Signal and Array Processing, Multiple Win-
dow Spectrum Estimate,” IEEE Signal Pro-
cessing Magazine, Sep 1998, 15(5): 30-32.

16D. Sirmans and B. Bumgarner, “Numerical
Comparison of Five Frequency Estima-
tors,” Journal of Applied Meteorology, Sep
1973, 14: 991-1003.

17F. Baudin, “Estimateurs de Fréquence
pour Mesurer la Dérive Doppler Sodar,” (in
French) Technical report: Note Technique
CRPE/CNET 38, Jan 1977.

18C. Marven and G. Ewers, A Simple Ap-
proach to Digital Signal Processing (Texas
Instrument, 1994; ISBN 0-904 047-00-8)
Chapter 5.

19D. Smith, “Signals, Samples, and Stuff: A
DSP Tutorial (Part 3),” QEX, July 1998,
pp 13-27.

20W. Press, S. Teukolsky, W. Vetterling,
and B. Flannery, Numerical Recipes in C
(Cambridge University Press, 1994; ISBN
0-521 43108 5) Chapter 12.

21G. Bretthorst, To Appear in Maximum En-
tropy and Bayesian Methods (Netherlands:
Kluwer, 2000), Chapter “Nonuniform Sam-
pling: Bandwidth and Aliasing.”

22C. E. Shannon, “Communication in the
Presence of Noise,” Proceedings of the
IRE, 37: 10-21, 1949.

23A. Vizinho, P. Green, M. Cooke, and
L. Josifovski, “Missing Data Theory, Spec-
tral Subtraction and Signal-to-Noise Esti-
mation for Robust ASR: an Integrated
Study,” in Proceedings of EuroSpeech ’99,
pp 2407-2410, Budapest, 1999.

24We have used the bias and the standard
deviation from the mean to design and
qualify the demodulator. Although it is a
powerful tool, its results are hardly linked
to the visual quality of the picture. The
same problem applies to the aforemen-
tioned PS/N (see Note 25).

25M. J. Nadenau, S. Winkler, D. Alleysson
and M. Kunt, “Human Vision Models for
Perceptually Optimized Image Process-
ing—A Review,” submitted to Proceedings
of the IEEE, Sep 2000.

26T. L. Veldhuizen, “C++ Templates as Partial
Evaluation,” In ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’99), pp 13-
18, San Antonio, Texas; Jan 1999.

27Todd L. Veldhuizen, “Expression Templates,”
C++ Report, 7(5): 26-31, Jun 1995. (Reprinted

20 May/June 2003

in C++ Gems, Editor Stanley Lippman.)
28T. Veldhuizen and K. Ponnambalam, “Lin-

ear Algebra with C++-template metapro-
grams,” Dr. Dobb’s Journal, 21(8): 38-44,
Aug 1996.

29M. Frigo and S. G. Johnson. “FFTW: An
Adaptive Software Architecture for the
FFT,” in ICASSP 1998, volume 3, pages
1381-1384, 1998.

30M. Frigo, “A fast-Fourier-transform com-
piler,” Proceedings of the ACM SIGPLAN
‘99 Conference on Programming Language
Design and Implementation, Atlanta,
Georgia, United States, 1999, pp 169-180.

31R. Cook, “Real-Time Sound Processing,”
Dr. Dobb’s Journal, Oct 1998.

Lionel Cordesses first discovered
SSTV on his father’s (F2DC) P7-phos-
phor SSTV monitor when Lionel was
6 years old. Ten years and a few home-
made receivers later, he designed his
own PC-XT based SSTV demodulation
software.

1994 saw the beginning of a bench
program to test image-decoding algo-
rithms. Soon limited by the perfor-
mance of the processor, the project
revived and finally ended in Novem-

��

ber 2001, thanks to more number
crunching power, and a stronger theo-
retical knowledge.

He is now an Electronics Engineer
(1997) with a PhD in electronics
(2001). His research interests include
GPS-based control of farm vehicles
and analog electronics. He then
joined the R&D electronics depart-
ment of RENAULT Agriculture, a
company manufacturing farm trac-
tors. He now focuses on control sys-
tems and embedded controllers. As
an engineer, he always tries to ex-
plain complex theories with simple
examples, trying to bridge the theory-
practice gap. He is an IEEE and
ACM member.

His hobbies include building
model aircraft and their related elec-
tronics and flying indoor-light mod-
els. He also enjoys drawing Donald
Duck and other characters of the
Duck family in the Carl Barks’ way.
He is also fond of French and Ameri-
can film noir of the 1940s and 50s.

Roland Cordesses, F2DC, was
licensed in 1962, and he has been a
member of ARRL since 1964. He
graduated as an Electronics Engi-
neer and is presently a Research En-
gineer at OPGC, an Observatory de-
voted to atmospheric and earth sci-
ences he joined in 1973.

For nearly 30 years, he has been
working in the design and develop-
ment of radar systems for remote sens-
ing of the atmosphere. Recently, he de-
signed and field-tested the world’s
first Doppler radar specifically de-
voted to the monitoring of volcanic
eruptions. During his career, he has
presented or published many papers
related to electronics and geophysics.

Roland’s Amateur Radio interests
mainly deal with homebrewing: Over
the years, he has designed and built
many receivers, transceivers and SSTV
projects.

Aside from Amateur Radio, he enjoys
building and flying model aircraft
(homemade transmitters and recei-vers,
of course) and hiking in the mountains.

