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scillators are the
subject of intensive
research. From Col-
pitts oscillators [1,
chap. 7] to phase

locked-loops [2], methods have been
proposed to improve stability, fre-
quency resolution, and spectral puri-
ty. Among the all-digital approaches
such as the one presented in [3],
direct digital frequency synthesis
(referred to here as DDS) appeared
in 1971 [4]. Three years later, this
technique was embedded in a com-
mercial unit measuring group delay
of telephone lines [5]. DDSs are now
available as integrated circuits and
they output waveforms up to hun-
dreds of megahertz.

While DDS is slowly gaining
acceptance in new system designs,
methods used to improve the quali-
ty of the generated waveform are
seldom used, even nowadays. The
purpose of Part 1 of this article is to
give an overview of the basics of
DDS, along with simple formulas to
compute bounds of the signal char-
acteristics. Moreover, several meth-
ods—some patented—are presented
to overcome some of the limits of
the basic DDS with a focus on
improving output signal quality.

An Overview of DDS
The digital signal processing opera-
tion we want to perform is to gener-
ate a periodic, discrete-time
waveform of known frequency Fo.

The waveform may be a sinewave, as
in [3]. It can also be a saw-tooth
wave, a triangle wave, a square
wave, or any periodic waveform. We
will assume that the sampling fre-
quency Fs is known and constant.
Before proceeding with the theory
of operation, we summarize why
DDS is a valuable technique.
▲ 1) The tuning resolution can be
made arbitrarily small to satisfy
almost any design specification.
▲ 2) The phase and the frequency
of the waveform can be controlled
in one sample period, making phase
modulation feasible.
▲ 3) The DDS implementation
relies upon integer arithmetic,
allowing implementation on virtual-
ly any microcontroller.
▲ 4) The DDS implementation is
always stable, even with finite-length
control words. There is no need for
an automatic gain control.
▲ 5) The phase continuity is pre-
served whenever the frequency is
changed (a valuable tool for tunable
waveform generators).

Theory of Operation and
Implementation
The implementation of DDS is
divided into two distinct parts as
shown in Figure 1: a discrete-
time phase generator (the accu-
mulator) outputting a phase value
ACC, and a phase to waveform
converter outputting the desired
DDS signal.

From a Sampling Frequency
to a Phase
The implementation of the DDS
relies upon integer arithmetic. The
size of the accumulator (or word
length) is N b. Assuming that the
period of the output signal is 2π

rad, the maximum phase is repre-
sented by the integer number 2N .
Let us denote �ACC the phase incre-
ment related to the desired output
Fo frequency. It is coded as an inte-
ger number with N − 1 b.

During one sample period Ts, the
phase increases by �ACC. It thus
takes To to reach the maximum
phase 2N :

To = 1
Fo

= 2N Ts

�ACC
. (1)

We can rewrite (1) in terms of fre-
quency Fo, as a function of �ACC:

Fo = Fo(�ACC) = Fs

2N �ACC. (2)

The phase increment �ACC, round-
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ed to the nearest integer (�x� is the
integer part of x), is given by

�ACC =
⌊

Fo
2N

Fs
+ 0.5

⌋
. (3)

Equation (2) is the basic equation
of any DDS system. One can infer
from (2) the tuning step �Fomin ,
which is the smallest step in fre-
quency, that the DDS can achieve
(remember that �ACC is an inte-
ger)

�FOmin = Fo(�ACC + 1)

− Fo(�ACC)

= Fs

2N (�ACC + 1 − �ACC)

= Fs

2N . (4)

Equation (4) allows the designer to
choose the number of bits (N) of
the accumulator ACC. This number
N is often referred to as the fre-
quency tuning word length [6]. It is
reckoned thanks to:

N =
⌊

log2

(
Fs

�FOmin

)
+ 0.5

⌋
. (5)

The minimum frequency Fomin the
DDS can generate is given by (2)
with �ACC = 1, the smallest phase
increment which still increases the
phase (�ACC = 0 does not increase
the phase). Fomin is

Fomin = Fs

2N . (6)

The maximum frequency Fomax the
DDS can generate is given by the
uniform sampling theorem
(Nyquist, Shannon, see, for
instance, [7, chap. 9]):

Fomax = Fs

2
. (7)

From a practical point of view a
lower Fomax is often preferred,
Fomax = Fs/4 for example. The
lower that Fomax is, the easier the
analog reconstruction using a low-
pass filter.

From a Phase 
to a Waveform
The phase is coded with N b in the
accumulator. Thus, the waveform
can be defined with up to 2N phase
values. In case 2N is too large for a
realistic implementation, the phase-
to-amplitude converter uses fewer
bits than N. Let us note P as the
number of bits used as the phase
information (with P ≤ N ). The
output waveform values can be
stored in a lookup table (LUT) with
2P entries: the output value is com-
puted as Output = LUT (ACC),
which is implemented in the phase
to waveform converter in Figure 1;
other output waveform generation
techniques, based upon approxima-
tions, are presented later.

DDS can generate a sinewave
with an offset b and a peak ampli-
tude a. The content of the LUT,
containing the DDS output values,
is computed for the index i ranging
from 0 to (2P − 1) using

LUT(i) =⌊
(b + asin

(
2πi
2P

)
+ 0.5

⌋
.

(8)

Using the LUT computed for
P = 9, a = 127.5, and b = 127.5,
the output waveform for Fs = 44, 100
Hz and Fo = 233 Hz is plotted as the
black curve in Figure 2. 

One might want to generate
two quadrature signals: one just
has to read both LUT(i) and LUT
(i + 2P/4), which, in turn, corre-
spond to the s ine and to the
cosine functions.

A square wave can be had with

no computational overhead because
that waveform is already available as
the most significant bit of the phase
accumulator ACC, as shown by the
red curve in Figure 2. The most sig-
nificant bit toggles every π rad,
since the accumulator represents 2π

rad. We must point out that this
square wave is corrupted by phase
jitter [8] of one sampling period
Ts. This phase jitter is caused by the
sampling scheme used to synthesize
the waveform. To quote:

... the output of the direct dig-
ital synthesizer can occur only
at a clock edge. If the output
frequency is not a direct sub-
multiple of the clock, a phase
error between the ideal output
and the actual output slowly
increases (or decreases) until it
reaches one clock period, at
which time the error returns to
zero and starts to increase (or
decrease) again. [34]

A sawtooth signal is also avail-
able with no computational over-
head. The linearly increasing phase
accumulator ACC value is stored

▲ 1. Fundamental DDS process.

Fo

Phase
Generator

(Accumulator)

ACC Phase to
Waveform
Converter

Output

▲ 2. Signals generated by software DDS:
sinewave, squarewave, and sawtooth signals.
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modulo 2N , thus leading to a saw-
tooth signal as shown by the blue
curve in Figure 2. The LUT is not
used in this case, or it is the identity
function: Output=ACC. With the
use of logic gates, a triangular out-
put waveform can be generated
from the sawtooth. 

Quantization Effects
Quantization occurs on both the
ACC phase information and on the
Output amplitude information. The
DDS is now redrawn including this
effect. The number of bits used by
each variable is written below the
variables on Figure 3.

Phase Quantization
Phase quantization occurs when the
phase information ACC is truncated
from N to P b as shown in Figure 3.
The reason behind this quantization
is to keep the memory requirements
of the phase to waveform converter
quite low: When implemented as a
LUT, the size of the memory is
2P × M b. A realistic value for N is
32, but this would lead to a 232 × M
memory that is not realistic. Thus we
quantize the phase information � to
P b, as it decreases the number of
entries of the LUT.

Unfortunately, the phase quanti-
zation introduces noise on the
phase signal �. It leads to
phase noi se (see [1, chap. 7] and
[9, chap. 3]) and it produces
unwanted spurious spectral compo-
nents in the DDS output signals,
often referred to as spurs. The dif-
ference between the carrier level
(which is the desired signal) and the
maximum level of spurs is called

spurious free dynamic range
(SFDR). A simplified formula given
in [10] to estimate the maximum
level of the spurs Smax when the car-
rier level is 0 dB is:

Smax = −SFDR
= −6.02P + 3.92 dB. (9)

For a detailed derivation of the
exact formulas (including the fre-
quency and the SFDR of spurs), the
reader is referred to [11] and [12].

Amplitude Quantization
The output of the phase to wave-
form converter is quantized to M b,
with M being the word length of
the Output amplitude word. This
quantization results in a signal-to-
noise ratio (in this case, it is a noise-
to-signal ratio) [10] usually
approximated by:

SNR = −6.02M − 1.76 dB. (10)

This bound also limits the performance
of the DDS, as the output spectrum
will exhibit a −6.02 M − 1.76 dB
noise floor. Thanks to (9) and (10) one
can infer (see [10]):

P = M + 1. (11)

Thus, Smax = −6.02 (M + 1)+
3.992 dB = −6.02M − 2.028 dB
and SNR = −6.02M − 1.76 dB
leading to Smax < SNR. This inequal-
ity means that the unwanted signals
are caused by the amplitude quantiza-
tion and not by the phase truncation.
Knowing (11), we can now focus on
improving the SFDR of a DDS.

Improving SFDR by
Sinewave Compression
There are many techniques to
improve the SFDR of a DDS. The
easiest one would be to increase the
phase word length. Thanks to (9)
and (10), one can infer we can
increase P (and thus M according to
11) to meet the technical specifica-
tions. The only drawback of this
approach is the total amount of
LUT memory, 2P × M b. For small
P (such as P = 9 b and M = 8 b),
implementing the LUT with a
memory leads to simple, low-cost,
hardware; see [13] and [8] for a
realization based upon this method.

For higher values of P, the mem-
ory requirements become impracti-
cal at high frequency or for em-
bedded system implementations. To
circumvent this impediment, the
solution is to compress the sine
waveform, thus reducing memory
consumption. Two methods are
reported in the next sections. One is
based upon symmetry and the other
on sinewave approximations.

A Quarter of a Sinewave
Instead of storing the entire sinewave
f (�) = sin (�) for 0 ≤ � ≤ 2π ,
one can store the same function for
0 ≤ � ≤ π/2 and use symmetry to
get the complete 2π waveform
range. This approach only uses 2P−2

entries in the LUT, leading to a
LUT-size compression ratio of 4:1.
The full sinewave can be recon-
structed at the expense of some
hardware (see [5], [14] and [9]).
From here out, we will only deal
with a quarter of a sinewave. Next
we discuss four methods of approxi-
mating a sinewave.

Sinewave Approximations
The first sinewave approximation
method goes as follows: instead of
storing f (�) = sin(�) using M b,
one can store g (�) = sin(�)−
2�/π , hence the name sine-phase
difference algorithm found in [14].

▲ 3. Signals generated by software DDS: sinewave, squarewave, and sawtooth signals.
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It has been shown in [14] that this
new function g only needs M − 2 b
to get the same amplitude quantiza-
tion for the sinewave (see Figure 4
for an example). The only drawback
is the need for an adder at the out-
put of the LUT.

The second sinewave approxima-
tion method is called the
Sunderland technique. This method,
named after its author [15], makes
use of trigonometric identities. It
has been used for P = 12, and it
uses the following identity:

sin(A+B+C ) = sin(A+B)cos(C )

+ cos(A) cos(B)

× sin(C ) − sin(A)

× sin(B) sin(C ).

(12)

The 12 b of the phase are:
▲ A, the four most significant bits
(with 0 ≤ A ≤ π/2)
▲ B, the following four bits [with
0 ≤ B ≤ (π/2)/(24)]
▲ C, the four least significant bits
[with 0 ≤ C ≤ (π/2)/(28)].
Equation (12) is then approximated
by

sin(A + B + C ) ≈ sin(A + B )

+ cos(A)sin(C ).

(13)

Using two LUTs [one for sin
(A + B ) and one for cos(A)sin(C )]
leads to a significant amount of
compression. The sin(A + B ) LUT
uses 28 × 11 b (P = 12 thus
M = P − 1 = 11) . The second
LUT is filled with small numbers,
thus requiring less than M b (actual-
ly 4 b; see [15]). Finally, the com-
pression ratio of this architecture is
51:1 (see [16] for a comparison of
various compression methods).

Several improvements to this
architecture have been presented
(see [14]) and the compression
ratio of the modified Sunderland
technique leads to a 59:1 compres-
sion ratio [16]. The same method

has been used in [17] with a 128:1
compression ratio and in [18] with
a 165:1 compression ratio.

The third sinewave approximation
method involves first-order Taylor
series expansions. Let us introduce
δ� with δ�<< �. The Taylor series
expansion of the sine function is

sin(� + δ�) ≈ sin(�)+ δ� cos(�).

(14)

Instead of storing the sine function,
the key idea presented in [19] and
described in [20] proposes to use
two coarse LUTs storing sin(�) and
cos(�). Moreover, the sine phase
difference algorithm can be used to
store efficiently sin(�), further
decreasing the size of the LUT.

The compression ratio obtained
with this method is 64:1 [19] and even
reaches 67:1 [16]. Another method
has been introduced in [21] where the
sine function is approximated by linear
interpolation. A few samples (16 in
[22]) of the sine function are stored in
a LUT, and the values are computed
using linear interpolation. The com-
pression ratio, computed thanks to data
given in [22], is: 10 × 211/960 ≈
21:1. Another implementation of the
linear solution does not rely on a LUT.
Using notations as in [23], the sine
function is written as

sin(� + δ�) ≈ y0 + m0(� − δ�).

(15)

The solutions presented in [24] and
used in [23] carefully impose a power
of two number of segments, thus using
the most significant bits of δ� as an
address. Moreover, to further decrease
complexity, the length of all the seg-
ments are equal. The implementation
of (15) only uses one multiplication
and one addition, without any complex
address decoder. There is no LUT in
this design. According to their authors,
such an approach reaches the perfor-
mance of other methods, showing a 60
dBc SFDR for P = 12 b phase [23].
The method is now patented [25].

The fourth sinewave approximation
method involves higher-order Taylor
series expansions. In [26], the Taylor
series expansion of the sine function is

sin(� + δ�) ≈ sin(�) + δ�cos(�)

− 1
2

(δ�)2sin(�).

(16)

The compression ratio, given in
[27], is 110:1 for P = 12 b and a
SFDR of 85 dBc.

Higher-order interpolation is
also used for sinewave compres-
sion: parabolic interpolation is pre-
sented in [28]. Only interpolation
coefficients V1 , V2 , and V3 are
stored in the LUT, and the value of
the sine function is reckoned
thanks to:

sin(� + δ�) ≈V1(�) + δ�V2(�)

+ (δ�)2V3(�). (17)

The compression ratio obtained
using (17) is given in [28] for a 64
dBc SFDR at M = 11 b is 157:1.
As in the previous first-order
Taylor series method, there is a
counterpart of the LUT-less
method. Based upon a quadruple
angle equality:

cos(4�) = 1 − 8sin2(�)

× [1 − sin2(�)]. (18)

▲ 4. Sine-phase difference LUT example (P
= 9, M = 8). 
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with 0 ≤ � ≤ π/8, (18) it is
approximated in [29] by

cos(4�) ≈ 1 − 8�2(1 − �2). (19)

Equation (19) is implemented
with multipliers and adders only.

There are still other approaches to
approximating a sinewave. A phase
to sinewave converter can be imple-
mented thanks to an angle rotation
algorithm, such as the CORDIC
(COordinate Rotation DIgital
Computer) algorithm [30]. A DDS
based on this method is described in
[31], and the effect of finite preci-
sion on the CORDIC converter is
analyzed in [32]. Another method
relies upon a non-linear digital to
analog converter that implements
the sinewave generation [33].

There are tradeoffs with each of
the above sinewave approximation
techniques, and no single technique
is best for all DDS applications.

In Part 2 of this article, we will
present additional tricks used to
maximize DDS SFDR.
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